Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 918: 170841, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38340841

RESUMEN

The ecological effects of climate change and ocean acidification (OA) have been extensively studied. Various microalgae are ecologically important in the overall pelagic food web as key contributors to oceanic primary productivity. Additionally, no organism exists in isolation in a complex environment, and shifts in food quality may lead to indirect OA effects on consumers. This study aims to investigate the potential effects of OA on algal trophic composition and subsequent bivalve growth. Here, the growth and nutrient fractions of Chlorella sp., Phaeodactylum tricornutum and Chaetocetos muelleri were used to synthesize and assess the impact of OA on primary productivity. Total protein content, total phenolic compounds, and amino acid (AA) and fatty acid (FA) content were evaluated as nutritional indicators. The results demonstrated that the three microalgae responded positively to OA in the future environment, significantly enhancing growth performance and nutritional value as a food source. Additionally, certain macromolecular fractions found in consumers are closely linked to their dietary sources, such as phenylalanine, C14:0, C16:0, C16:1, C20:1n9, C18:0, and C18:3n. Our findings illustrate that OA affects a wide range of crucial primary producers in the oceans, which can disrupt nutrient delivery and have profound impacts on the entire marine ecosystem and human food health.


Asunto(s)
Chlorella , Microalgas , Humanos , Ecosistema , Concentración de Iones de Hidrógeno , Valor Nutritivo , Acidificación de los Océanos , Océanos y Mares , Agua de Mar/química , Mariscos , Animales
2.
Environ Pollut ; 342: 123079, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061435

RESUMEN

The simultaneous presence of micro(nano)plastics (MNPs) and pollutants represents a prevalent environmental challenge that necessitates understanding their combined impact on toxicity. This study examined the distribution of 5 µm (PS-MP5) and 50 nm (PS-NP50) polystyrene plastic particles during the early developmental stages of marine medaka (Oryzias melastigma) and assessed their combined toxicity with triphenyltin (TPT). Results showed that 2 mg/L PS-MP5 and PS-NP50 could adhere to the embryo surface. PS-NP50 can passively enter the larvae and accumulate predominantly in the intestine and head, while PS-MP5 cannot. Nonetheless, both types can be actively ingested by the larvae and distributed in the intestine. 2 mg/L PS-MNPs enhance the acute toxicity of TPT. Interestingly, high concentrations of PS-NP50 (20 mg/L) diminish the acute toxicity of TPT due to their sedimentation properties and interactions with TPT. 200 µg/L PS-MNPs and 200 ng/L TPT affect complement and coagulation cascade pathways and cardiac development of medaka larvae. PS-MNPs exacerbate TPT-induced cardiotoxicity, with PS-NP50 exhibiting stronger effects than PS-MP5, which may be related to the higher adsorption capacity of NPs to TPT and their ability to enter the embryos before hatching. This study elucidates the distribution of MNPs during the early developmental stages of marine medaka and their effects on TPT toxicity, offering a theoretical foundation for the ecological risk assessment of MNPs.


Asunto(s)
Compuestos Orgánicos de Estaño , Oryzias , Contaminantes Químicos del Agua , Animales , Cardiotoxicidad , Contaminantes Químicos del Agua/análisis , Poliestirenos/metabolismo , Larva , Plásticos/metabolismo
3.
Environ Res ; 224: 115511, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36801235

RESUMEN

In the context of global climate change, ocean acidification and warming are becoming increasingly serious. Adding carbon sinks in the ocean is an important part of efforts to mitigate climate change. Many researchers have proposed the concept of a fisheries carbon sink. Shellfish-algal systems are among the most important components of fisheries carbon sinks, but there has been limited research on the impact of climate change on shellfish-algal carbon sequestration systems. This review assesses the impact of global climate change on shellfish-algal carbon sequestration systems and provides a rough estimate of the global shellfish-algal carbon sink capacity. This review evaluates the impact of global climate change on shellfish-algal carbon sequestration systems. We review relevant studies that have examined the effects of climate change on such systems from multiple levels, perspectives, and species. There is an urgent need for more realistic and comprehensive studies given expectations about the future climate. Such studies should provide a better understanding of the mechanisms by which the carbon cycle function of marine biological carbon pumps may be affected in realistic future environmental conditions and the patterns of interaction between climate change and ocean carbon sinks.


Asunto(s)
Secuestro de Carbono , Agua de Mar , Cambio Climático , Explotaciones Pesqueras , Concentración de Iones de Hidrógeno , Mariscos , Carbono , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA